Part 1: Mechanical Engineers Say Driverless Cars are the “New Talk of the Town”

2018-11-13T10:03:57+00:00

Major giants inside the automobile industry have already show cased few of their self-driving car technology and many car companies aim to roll out production vehicles with driverless capabilities by 2020. In just a few years, industry experts expect fully autonomous vehicles to follow the trendThe implications autonomous driving will have on insurance matters and legal outcomes of accidents is just one grey area to be explored as we move towards a more automated future. Experts are making some big claims about the future impacts of driverless cars. Before they arrive, check out the comprehensive pros and cons list.   Advantages of Driverless Cars Without the need for a driver, cars could become mini-leisure rooms. There would be more [...]

Part 1: Mechanical Engineers Say Driverless Cars are the “New Talk of the Town” 2018-11-13T10:03:57+00:00

Part 2 – Mechanical Engineers Recommend 7 Features on ‘New Age” Refrigerators

2018-11-07T10:09:55+00:00

Mechanical Engineers Update Tomorrow’s Refrigerator: Here are Your Choices  Black Board Models  Black board models are ideal for young families. Shopping list, school timetable and forthcoming doctors' appointments – all readily visible because they are stuck to the door of a refrigerator using fridge magnets. A black board fridge-freezer is a more stylish way of displaying your messages and reminders as you can write directly on the door using school chalk or liquid chalk markers. The black board material makes it easy to wipe away the writing.      2.    Glass Fronts New fridge models are doing away with handles. These sleek units offer seamless visual integration with handle-less cabinetry design. Models with glossy glass surfaces in brilliant white [...]

Part 2 – Mechanical Engineers Recommend 7 Features on ‘New Age” Refrigerators 2018-11-07T10:09:55+00:00

Mechanical Engineers Update Refrigerators – Part 1

2018-11-01T11:09:21+00:00

Mechanical Engineers Save Lives People think of medical doctors and nurses as the key providers of health care.  In fact, Mechanical Engineers have saved more lives than doctors.  Refrigeration keeps food from spoiling and prevents insect infestation.  A Century after the refrigerator supplanted the ice-box, new models now are part of home’s “smart” products.  Family Hub refrigerators allow owners to play music in their kitchen, leave digital notes for family members, check to see if they’re out of milk when they’re away from home, and even order groceries with just a voice command.   Smart refrigerators open a whole new world for getting content and services.  Hi-Tech options include touch-screen displays on the front of doors, there are one or [...]

Mechanical Engineers Update Refrigerators – Part 1 2018-11-01T11:09:21+00:00

Hydrogen Fuel Cells for Cars

2018-09-11T11:43:44+00:00

Up and Coming Hydrogen Fuel Cells for Automotive Use If you haven’t heard about hydrogen and fuel cells before, then now is your chance. These technologies are bursting on to the scene and can solve some of the biggest problems in energy ranging from commercial buildings to transportation. While most people are more familiar with solar, wind and battery power, keep your eye on these up-and-coming technologies that could add to our nation’s diverse energy mix. Here Are A Few Things to Know About Hydrogen and Fuel Cells. Electric cars can run on batteries, hydrogen, solar, or any source of electricity.  Hydroelectric cars contains fuel cells that produce electricity from hydrogen stored in high pressure gas tanks and oxygen.  [...]

Hydrogen Fuel Cells for Cars 2018-09-11T11:43:44+00:00

Material Engineers Looking to Future: Solar Assisted Electric Vehicles  (SAEVs)

2018-08-02T09:23:52+00:00

Material Engineers : A Pipedream?  Solar-powered cars have been thought of by many as an impossible pipedream. But the innovators behind, a fully solar-powered vehicle to be released in 2019.  GOING FULLY SOLAR A Car whose ability to use solar power has been thought of as an impossible feat.  Designed by the Dutch startup Lightyear, the “car that charges itself” can supposedly drive for months without charging and has a 400 – 800 km range. But is a solar-powered car feasible?Up until now fully solar-powered cars were not considered a realistic prospect, Solar Assisted Electric Vehicles (SAEVs) were considered the best possible option for solar cars, adding up to hundreds of miles to a cars range. But the Dutch Lightyear promises [...]

Material Engineers Looking to Future: Solar Assisted Electric Vehicles  (SAEVs) 2018-08-02T09:23:52+00:00

Material Engineers : Pros and Cons of Solar Powered Cars

2018-07-25T09:17:33+00:00

Figure 1.  Solar Powered Cars in the Future Although a solar power car may not be commercially viable right now, there are ways that solar power can be added to existing designs to make vehicles more efficient. Material Scientist examine the pros and cons of this technology, it can continue to move forward in development to help save on fossil fuels, and the electric grid and pollutions. Solar-powered vehicles (Solar Cells ) have zero emission level, as they don’t utilize non-renewable resources and burn fuel. The electric motors generate electricity (See Figure 1.) that doesn't emit any greenhouse gases or any other pollutants. These cars are quieter than the vehicles powered by conventional fuels, which don't cause noise pollution as well. Lets [...]

Material Engineers : Pros and Cons of Solar Powered Cars 2018-07-25T09:17:33+00:00

Electric Vehicle Batteries: Recycled

2018-07-18T14:04:45+00:00

  Material Scientist Ponder What to Do With Used EV Batteries  As electric vehicles become mainstream, mechanical engineers and chemical engineers are trying to address the big environmental question: what do we do with the used lithium-ion batteries? The batteries used in electric cars are physically large, last 8 to 10 years, and will account for 90 per cent of the lithium-ion battery market by 2025.  This will increase lithium demand fourfold, and more than double the demand for cobalt — two of their essential elements.  The price of cobalt has already risen by more than 80 per cent in 2018.   Most expert Material Scientists agree that a replacement hybrid car battery can range from $1,000 to more than $6,000.  The [...]

Electric Vehicle Batteries: Recycled 2018-07-18T14:04:45+00:00

A Mechanical Engineer Designs Ways to Give Your Canine Friend a Lift Up: Dog Ramps

2018-02-15T10:34:21+00:00

A Mechanical Engineer Designs Ways to Give Your Canine Friend a Lift Up  A Mechanical Engineer designs ways to give your "Best Friend" easy access to your vehicle and different higher surfaces. Read more to find out what kind of options are available for your dog.  A properly sized and installed dog ramp eases a dog's boarding dilemmas.  Ramps are divided into several categories: folding, telescoping, fixed, moveable and those that are stored under the back bumper of a car.  This article describes the different types of dog ramps available and the engineering required to properly design them.    Fig. 1 Mechanical Engineers Design Easy Car Access for Dogs Mechanical Design, Materials Science,  Weight, and Ease [...]

A Mechanical Engineer Designs Ways to Give Your Canine Friend a Lift Up: Dog Ramps 2018-02-15T10:34:21+00:00

Licensed Mechanical Engineers Create Animal Prosthetics

2018-02-15T11:11:34+00:00

Animal Prosthetics are a widely varying field with many different interfaces.  Licensed Mechanical Engineers add immense insight into material selections, gearing, wear, and vibration response.   From disease prevention (heating, ventilation, hospital room design) to surgical tools, mechanical engineering has vastly changed the art of healing sick and injured animals.  A Licensed Mechanical Engineer can develop a variety of apparatus' for the Animal Kingdom to increase   mobility. Animal prosthetics are a relatively new phenomenon, and their technology is improving at a rapid pace.  Animal Prosthetics are Designed by Licensed Mechanical Engineers Animal Prosthetics are a widely varying field with many different interfaces.  Licensed Mechanical Engineers add immense insight into material selections, gearing, wear, and vibration response. An actuated prothetic [...]

Licensed Mechanical Engineers Create Animal Prosthetics 2018-02-15T11:11:34+00:00

Wind Load CFD Modeling for Rooftop Elements Compared to ASCE 7

2018-02-20T11:28:46+00:00

  Wind Load Comparison between CFD and ASCE 7 for Rooftop shapes Welcome back to our blog series on the phenomenon called Wind Load CFD Modeling and how it affects civil and mechanical engineers.  Wind Load is the force that blowing wind exerts on any device or structure that extends above ground level.  After an initial introduction to the factors that affect wind load on an object, I compared three different sets of wind load calculation methods using three simple objects, hypothetically placed on a 100-foot-tall building.  Starting with generic drag equation for the first equation, added two modification coefficients called "gust factor" and "exposure coefficient" for the second equation.    I used the model for rooftop objects for the [...]

Wind Load CFD Modeling for Rooftop Elements Compared to ASCE 7 2018-02-20T11:28:46+00:00

Wind Load Calculations and Modeling

2018-02-20T12:26:27+00:00

 Part 1 of our Wind Load Series “Wind load” is a calculated value representing the total force on a structure or object cause by pressure from wind moving over it.  In this blog series, we will discuss different methods for wind load calculations, the factors that influence its magnitude, and the effects a high wind load can have on a structure.  Wind load is most commonly addressed by civil and structural engineers when designing buildings, but mechanical engineers can encounter the effect when designing tall objects like cranes, telescoping communications masts or wind turbine towers. Wind Load Essentials As a force, wind load is the product of pressure distributed over an area (psf times ft2 or Pa times m2).  In [...]

Wind Load Calculations and Modeling 2018-02-20T12:26:27+00:00

Flat Panel and LCD Screens, Part 2

2018-02-22T10:23:01+00:00

Figure 1: Unpowered Sony Ericsson S500i LCD screen at 200x magnification In our last blog post, I wrote about some of the physics and materials science principles that go into the design and manufacture of liquid-crystal display (LCD) screens.  The eponymous liquid crystals (LCs) in such a display have to be quite small in order to create a seamless image; as I mentioned in the last entry, the subpixels (the red, green and blue elements comprising a pixel, visible in Figure 1) can be smaller than a red blood cell.  Each of these subpixels needs its own control system that interacts with the data drivers along the periphery of the screen.  These power and control circuit components [...]

Flat Panel and LCD Screens, Part 2 2018-02-22T10:23:01+00:00

Layered Composite Heaters for Semiconductor Processing

2018-02-20T12:34:14+00:00

Figure 1: Composite layered heater from patent  US 9,224,626 B2 Alexander Glew, Ph.D., P.E. recently contributed to a new patent on an advanced thin-film electric heaters, layered composite heaters, for CVD semiconductor processing and related technologies titled “Composite substrate for layered heaters”.  Watlow Electric, based in St. Louis, hired Glew Engineering and Dr. Glew to help develop this heater technology due to his experience in the Silicon Valley’s semiconductor industry.  As a semiconductor equipment expert and materials engineering consultant, Dr. Glew’s familiarity with semiconductor manufacturing meant he understood both the limitations of common semiconductor chuck heating methods and the techniques that could be used to construct a better heater.  In this post, we review how this composite heater capitalizes on semiconductor [...]

Layered Composite Heaters for Semiconductor Processing 2018-02-20T12:34:14+00:00

Thermal Expansion in a Glass and Aluminum Window: Part 2

2018-02-20T13:29:14+00:00

Figure 1: Simplified model of an aluminum-glass window   In last week’s blog, Thermal Expansion in a Glass and Aluminum Window: Part 1, we introduced the basic concept of thermal expansion in solid materials.  Since CTE mismatch can impose extremely high stress, during mechanical engineering design one must consider the temperature exposure and expansion or contraction of a material.  In order to help the read gain insight, we used a simplified aluminum-framed window to demonstrate that a hot summer day would be enough to shatter glass if the window wasn’t equipped with a flexible gasket between the frame and the glass.  For this entry, we utilize a finite element analysis (FEA) to elucidate the stress effects caused by both high and [...]

Thermal Expansion in a Glass and Aluminum Window: Part 2 2018-02-20T13:29:14+00:00

Thermal Expansion in a Glass and Aluminum Window: Part 1

2018-02-21T10:38:23+00:00

Equipment designers must accommodate thermal expansion (CTE)of dissimilar materials, especially when they are subject to large temperature changes.  This problem is often called "CTE mismatch."  In this blog, we give the fundamentals of thermal expansion calculations used in thermo-mechanical analysis. These calculations are simple but useful, and easy enough to perform by hand or with a spread sheet. For more complicated shapes, one must use computer modeling.  As an example, we perform a finite element analysis (FEA) in a later blog http://glewengineering.com/thermal-expansion-in-a-glass-and-aluminum-window-part-2/, of a glass and aluminum window and frame to show where the stress is excessive.  This points to the obvious need for a gasket to perform as a thermal interface material, in order to lessen [...]

Thermal Expansion in a Glass and Aluminum Window: Part 1 2018-02-21T10:38:23+00:00

Italian Masters: Galileo’s Stellar Science and Engineering

2018-02-21T10:55:17+00:00

Portrait of Galileo Galilei Justus Sustermans [Public domain], via Wikimedia Commons I’d like to return to our previous series on the Italian Masters, focused not on the usual masters or painting and sculpture but on the masters or science, mathematics, and engineering.  So far in the series I’ve written about the accomplishments of Volta, Cassini, Venturi and Torricelli.  Today, I’d like to look at one of the greats: Galileo Galilei.  Galileo is most famous today for standing up for heliocentrism against the Catholic Church and spending the last years of his life under house arrest as punishment.  However, Galileo didn’t let controversies or confinement stop him, and accomplished a great amount of research in not only [...]

Italian Masters: Galileo’s Stellar Science and Engineering 2018-02-21T10:55:17+00:00

Italian Masters: Volta Jump-Starts Electrical Engineering

2017-11-07T16:51:43+00:00

Figure 1: Allesandro Volta We’ve been taking a break from hard-hitting mechanical engineering and materials science blogs with some pieces on the Italian masters of science, mathematics and engineering in the 16-19th centuries.  I’ve previously explored the lives and contributions of Evangelista Torricelli, Giovanni Venturi and Giovanni Cassini.  For this blog, I’m focusing on Alessandro Volta, who helped revolutionize our understanding of electricity and electrochemstry it in the late 18th century.  […]

Italian Masters: Volta Jump-Starts Electrical Engineering 2017-11-07T16:51:43+00:00

12 Years a Martian: Mechanical Engineering on Mars, The Red Planet

2018-04-10T16:24:41+00:00

Figure 1: Mars Exploration Rover mobility testing By NASA

12 Years a Martian: Mechanical Engineering on Mars, The Red Planet 2018-04-10T16:24:41+00:00

12 Years a Martian: Materials Science on the Red Planet

2017-11-09T10:25:54+00:00

Figure 1: Diagram of the scientific equipment on MER-B Opportunity Mars Exploration Rover Launches Press Kit, June 2003, p. 41 [i] I mentioned in a blog last week that Mars Exploration Rover B (FIgure 1), more affectionately called Opportunity, recently celebrated the 12th anniversary (in Earth years) of its landing on Mars.  12 years without maintenance on the hostile surface of another planet is incredible, considering the original operational time was planned for only 3 months.  Mars Science Laboratory Curiosity currently gets the most press, with its larger tool library and fancier cameras, but there are still scientists and engineers at JPL piloting Opportunity from one scientific site to the next.  In the last blog, I mentioned [...]

12 Years a Martian: Materials Science on the Red Planet 2017-11-09T10:25:54+00:00

12 Years a Martian: Engineering Challenges on the Red Planet

2018-08-29T12:57:38+00:00

Figure 1: Mars Exploration Rover By NASA/JPL/Cornell University, Maas Digital LLC [Public domain], via Wikimedia Commons Depending on which Facebook pages or Twitter feeds you follow, some of you may have caught wind that Opportunity (Mars Exploration Rover B, Figure 1) recently passed its twelfth anniversary of its landing on the red planet.  Opportunity’s ongoing trek across Mars represents a fantastic accomplishment in engineering.  At the time I’m writing this, the rover has been in continual operation for over 4,300 Earth days (that’s about 4,185 Sols, or Martian days).  Considering its original planned mission time of 92 Earth days, Opportunity has exceeded its design lifetime by 4,700%.  Imagine having a car that, instead of a [...]

12 Years a Martian: Engineering Challenges on the Red Planet 2018-08-29T12:57:38+00:00